

From endangered towards sustainable: Atlantic Salmon populations in Denmark

Anders Koed

Technical University of Denmark, DTU Aqua, Section for Freshwater Fisheries and Ecology

Status of the Danish salmon populations in the 1980'ies

What went wrong?

During 1940-1970 large land claim projects were carried out -

destroying spawning and nursery areas, impairing migration.

Lots of small barriers - mills and fish farms

Fish farming, 1894 – 1975.

Caused habitat loss, habitat degradation and impaired migration.

About 800 in 1970, 150 left today.

Hydropower development, 1920-1970

Hydropower development River Gudenå 1921

River blockage prevented the salmon in reaching the spawning areas - the River Gudenå salmon vent extinct

Problems for downstream smolt migration at weirs

	Weir type	Mean smolt loss (%)
	Water mills (n=5)	30
	Fish farms (n=38)	42
	Hydropower (n=7)	82

Smolt loss when passing 3 fish farms in a river: $(1-(1-0.42)^3) = 80\%$

Salmon landings in the estuary of River Skjern Å

Landings in Ringkøbing Fjord 1900 - 1978

Otterstrøm (1938) og Statistisk Årbog, Fiskeriministeriet

DTU

In the late 1990'ies a review combined with surveys of the salmon rivers for YOY, suggested that salmon populations still existed not only in River Skjern Å

DNA from old scales compared with DNA collected during 1993-2003

DNA from old scales compared with DNA collected during 1993-2003 Old DNA (1910 - 1913)

Present

New status 2003 - four indigenous populations left

Nielsen, Hansen & Bach (2001)

Resurge of the salmon populations - multi-faceted management

Management tools

- Restoration of habitats
- Fishery regulations
- Stocking

The salmon stocking programme was optimised

Nielsen, Hansen & Bach (2001)

Migration barriers have been removed and habitats restored

The weir and dam at Vilholt Mill was removed in 2008

What's the effect?

Effects of barrier removal at a whole-system scale

Full river restoration

Spawning run of sea trout

Restored habitat in the ponded zone

Ponded zone – before

Ponded zone – after

Loss of habitat as a (overlooked) consequence

Distance from source

Birnie-Gauvin et al. 2017

Trout density before and after removal

Upstream Downstream 12 12 ■ OLD YOY 10 10 Trout density 8 (n per m) 8 6 6 4 4 2 2 * * * 0 0 ~9⁶¹,

Birnie-Gauvin et al. 2017

Habitat restoration - data Trout as model species

Habitat restoration - data Trout as model species

YOY trout

The density increased averagely 175 %

The River Skjern Nature Project 2002

- Largest river restoration project i Northern Europe

E.

Dam removal

Dam removal

Fishery regulations

- In the estuaries and in the Wadden Sea
- Quotas in the rivers, 1SW+MSW (10% of spawning run) > C&R
- Reduced period 16. April 16. October

Regulation of predators

Acoustic and radio tagged salmon smolts:

40 - 50 % tags recovered in one cormorant colony (Koed et al. 2006, Jepsen et al. 2018).

The Danish salmon populations - development

Angler-caught salmon 1996-1997 and 2004-2022

The Danish salmon populations - the River Skjern

Result of an extensive, focused and knowledge-based effort

Status for River Storå 2017 and River Ribe Å 2023:

Self-sustaining salmon populations and no supportive stocking (TAC ~ 10 %)

DTU

Where to go from here?

Adaptive Management Approach

ORIGINAL ARTICLE

Fisheries Management WILEY

From endangered to sustainable: Multi-faceted management in rivers and coasts improves Atlantic salmon (*Salmo salar*) populations in Denmark

- a) Identify the rivers of highest priority production potential and potential for recovery
- b) Identify local threats poor habitat, predation pressures, barriers, pollution etc.
- c) Restore habitats for spawning and growth.
- d) Remove barriers to movement or efficient fish passage
- e) Fishery regulations and reduce predation
- f) Perform systematic stock assessments to evaluate

More efficient regulation of predation?

Improving and expanding habitat

Improving and expanding habitat

Salmon Habitat Quality

Continued focus on removing barriers

Conclusions

- Adaptive management and close collaboration and engagement of stakeholders, decision makers and researchers has been central for the positive development of the salmon populations in Denmark.
- All management approaches were applied simultaneously. Focus is now on barrier removal and habitat restoration.
- Stronger focus on tourism and socio-economic may me a positive contributor.
- Prioritisation of which tools to focus on:

- a. River restoration
- b. Fishery regulation(s)
- c. Stocking

DTU

Thanks for your attention!

Questions?

Further information on: http://www.aqua.dtu.dk and http://www.fiskepleje.dk